### Who's Online

We have 61 guests and no members online

66 is carréphylic - approach of √66 ~ 8.1240384046

Subsequent approximations of √66 - the position of a fraction indicates whether it is over or under the root-value.
 1 0 1 2 3 4 5 6 7 8 41 49 57 65 528 593 658 723 788 853 918 983 1048 5305 6353 7401 8449 68640 ... 0 1 1 1 1 1 1 1 1 1 5 6 7 8 65 73 81 89 97 105 113 121 129 653 782 911 1040 8449 ...

 Diophantine equation: s2-66p2 = 1 d = distance to nearest square N2: +2 Smallest non-trivial s: (2*64+2)/2 rational: 65 actual: 65 ⇒ F=130 Smallest non-trivial p: 2*8/2 rational: 8 actual: 8 ⇒ primus foldage=8 v-value qt-blocks: 82-66*12: -2 Number of series: 13

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
 s 1 65 8449 ... p 0 8 1040 ...

 In the numerator: U(1,65)130 = 1/2*U(2,130)130 - half the secundus of 130. In the denominator: U(0,8)130 = 8*U(0,1)130 - the 8-fold primus of 130. as well as ... In the numerator: U(0,528)130 = 528*U(0,1)130 - the 66*8-fold primus of 130. In the denominator: U(1,65)130 = 1/2*U(2,130)130 - half the secundus of 130. and ... In the numerator: U(-8,8)130 = 8*U(-1,1)130 - the 8-fold quartus of 130. In the denominator: U(1,1)130 = - the tertius of 130.