71 is carréphobic - approach of √71 ~ 8.4261497732

Subsequent approximations of √71 - the position of a fraction indicates whether it is over or under the root-value.
1012345678174259278337396455514969148319973480293233280336283397634324346723502035368357163117806292775410581193509923456802756261316684235774236744265103216881389911124220799204088080...
0111111111257334047546111517623741334803893430647195132554559586371678413981347464872722965427838132710837583542456280039712249591649521287448024220799...

Diophantine equation:s2-71p2 = 1
d = distance to nearest square N2:+7
Smallest non-trivial s:(2*64+7)/7rational: 135/7actual: 3480⇒ F=6960
Smallest non-trivial p:2*8/7rational: 16/7actual: 413⇒ primus foldage=413
v-value tq-blocks:592-71*72:+2
Number of series:21

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1348024220799...
p04132874480...

In the numerator:U(1,3480)6960=1/2*U(2,6960)6960-half the secundus of 6960.
In the denominator:U(0,413)6960=413*U(0,1)6960-the 413-fold primus of 6960.
as well as ...
In the numerator:U(0,29323)6960=29323*U(0,1)6960-the 71*413-fold primus of 6960.
In the denominator:U(1,3480)6960=1/2*U(2,6960)6960-half the secundus of 6960.
and ...
In the numerator:U(59,59)6960=59*U(1,1)6960-the 59-fold tertius of 6960.
In the denominator:U(-7,7)6960=7*U(-1,1)6960-the 7-fold quartus of 6960.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110